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tMany appli
ation domains su�er from nothaving enough labeled training data forlearning. However, large amounts of un-labeled examples 
an often be gathered
heaply. As a result, there has been a greatdeal of work in re
ent years on how unlabeleddata 
an be used to aid 
lassi�
ation. We
onsider an algorithm based on �nding min-imum 
uts in graphs, that uses pairwise re-lationships among the examples in order tolearn from both labeled and unlabeled data.Our algorithm uses a similarity measure be-tween data to 
onstru
t a graph, and thenoutputs a 
lassi�
ation 
orresponding to par-titioning the graph in a way that minimizes(roughly) the number of similar pairs of ex-amples that are given di�erent labels. Wegive several theoreti
al justi�
ations for thisapproa
h, and provide experiments on bothsyntheti
 and real datasets. This method isalso seen to be robust to noise on the labeledexamples.1. Introdu
tionLearning algorithms often fa
e a la
k of suÆ
ient la-beled data. Whether the task is to 
lassify text do
-uments, web pages, or 
amera images, we often needa learning algorithm to do well with only a few la-beled training examples. Lu
kily, in many 
ases, largenumbers of unlabeled examples may be readily avail-able. For instan
e, in do
ument 
lassi�
ation, onemight have easy a

ess to a large database of do
-uments, only some of whi
h have been 
lassi�ed byhand. As a result, there has been a good deal ofwork in re
ent years on how unlabeled data 
an beusefully employed in order to produ
e better predi
-tions (Ratsaby & Venkatesh, 1995; Castelli & Cover,1996; Nigam et al., 1998; Blum & Mit
hell, 1998; Ben-nett & Demiriz, 1998; Hofmann, 1999; Zhang & Oles,2000; S
huurmans, 1997).Re
ently, a method based on graph min
uts has beenproposed in the vision literature for the problem of
leaning up 3-D pixel images (Greig et al., 1989; Roy& Cox, 1998; Boykov et al., 1998; Snow et al., 2000).

Given an initial noisy image 
reated from a stereo 
am-era, the goal is to improve the image by minimizing anappropriate \energy fun
tion." This energy fun
tion
ombines a term for ea
h pair of neighboring pixelsthat are at di�erent depths (en
ouraging the algorithmto \smooth" the image) and a term for the number ofpixels 
hanged from the original image (en
ouragingthe algorithm not to 
hange too many pixels). Theinsight of Greig et al. (1989) and Boykov et al. (1998)is that this energy fun
tion 
an be minimized by ap-plying a graph min
ut algorithm.1In this paper, we show that this method 
an be ap-plied to the ma
hine learning problem of 
ombininglabeled and unlabeled data as well. Given a dataset oflabeled and unlabeled examples, we 
onstru
t a graphon the examples su
h that the minimum 
ut on thisgraph yields an \optimal" binary labeling of the unla-beled data a

ording to 
ertain optimization fun
tions.Our approa
h is inspired by the work of Kleinberg andTardos (2000) who 
onne
t the work in vision to amore general 
lassi�
ation setting they 
all the \met-ri
 labeling problem". In fa
t, we will be 
onvertingthe learning problems into a te
hni
ally simpler ver-sion of their setting (a binary rather than multi-way
lassi�
ation) that 
an be solved exa
tly rather thanjust approximated. Thus, our fo
us will be on how to
onstru
t an appropriate graph rather than develop-ing new algorithms for solving the graph problem asin Kleinberg and Tardos (2000).As with most other approa
hes to 
ombining labeledand unlabeled data, the high level idea of this methodis to assign values to the unlabeled examples in orderto optimize an asso
iated obje
tive fun
tion. For themin
ut approa
h, the kinds of fun
tions that 
an beoptimized are limited to depend only on pairwise rela-tionships among examples. What makes this approa
hespe
ially appealing, however, is that for the fun
tionswe 
an handle, graph min
uts give a polynomial-timealgorithm to �nd the true global optimum. Thus wetrade o� the generality of an approa
h su
h as EM orhill-
limbing/gradient-des
ent (whi
h 
an be appliedalmost anywhere) for 
on�den
e in �nding the exa
toptimum. The natural question then is: how inter-1A similar te
hnique is used by Wu and Leahy (1993)for image partitioning. Shi and Malik (1997) give a moresophisti
ated approa
h based on normalized 
uts.



esting are the obje
tive fun
tions this approa
h 
anrepresent? Do they make sense theoreti
ally, and dothey help experimentally?In this paper, we provide results in both of these di-re
tions. We des
ribe the min
ut approa
h in detailand prove a number of theoreti
al guarantees. We alsoshow experimentally that this method 
an indeed useunlabeled data to substantial advantage, though it is
lear we have not yet found the best way to tune thisapproa
h. We will also see experimentally that themin
ut approa
h tends to be robust to random noise.This is not surprising given its use for redu
tion ofnoise in images (Boykov et al., 1998; Snow et al., 2000).For 
on
reteness, here is an example of a kind of opti-mization that the min
ut algorithm 
an perform.2Given a set of (positive and negative) labeledexamples L, and a set of unlabeled examplesU , �nd a labeling of the points in U thatminimizes the leave-one-out 
ross-validationerror of the nearest-neighbor algorithm, whenapplied to the entire dataset L [ U .Noti
e that this optimization problem is natural for aniterative-relabeling style algorithm or for greedy lo
aloptimization. However, by setting it up as a graphmin
ut problem, we 
an �nd the global optimum, anddo so in polynomial time. In a sense, the graph min-
ut approa
h relates to nearest-neighbor style algo-rithms mu
h like transdu
tive SVM (Bennett & Demi-riz, 1998; Hofmann, 1999) relates to the standard SVMalgorithm: its goal is to assign labels to the unlabeleddata in su
h a way as to make the underlying learn-ing algorithm \happiest". We explore this further inSe
tion 3.One ni
e feature of having an algorithm that eÆ
iently�nds a global optimum is that we 
an 
ompare it toa lo
al optimization algorithm for the same obje
tivefun
tion and see how the results di�er. In parti
u-lar, we are interested in (a) is the global optimum re-ally better than a typi
al lo
al optimum in terms ofthe value of the obje
tive fun
tion, and (b) does thistranslate to a signi�
ant di�eren
e in terms of pre-di
tion a

ura
y. (I.e., does our obje
tive fun
tion orgenerative model have anything to do with reality?)We perform experiments of this form as well.One last point is that assuming the unlabeled train-ing data 
omes from the same underlying distributionas the test data, there is really no di�eren
e between\unlabeled data" and \test data". Thus, the problemof how to use unlabeled data 
an also be viewed as thequestion: \given a large set of (unlabeled) test data,
an properties of the entire test set be used to makebetter predi
tions than via the standard approa
h of2This parti
ular 
riteria may not be the best one in theworld to optimize | in parti
ular, the nearest-neighborgraph is likely to have isolated po
kets | but we give better
riteria in Se
tion 3.

�xing the learned hypothesis before any test data hasbeen seen?" In parti
ular, in our experiments we willput both the unlabeled training data and the test datainto the same pot, then run the algorithms, and thenread o� the labels assigned to the test points as ourpredi
tions.This paper is organized as follows. In se
tion 2, wedes
ribe the Graph Min
ut algorithm. In se
tions 3and 4, we present some theoreti
al results to moti-vate the appli
ability of this algorithm. Se
tion 5 
on-tains experimental results, on both syntheti
 data anddatasets from the UCI repository. Finally, in se
tion6, we present our 
on
lusions.2. The Graph Min
ut LearningAlgorithmWe now des
ribe the Graph Min
ut learning algo-rithm. First, let us introdu
e some notation. We aregiven a set L of labeled examples, and a set U of un-labeled examples. We assume we are in the setting ofbinary 
lassi�
ation (labels are positive or negative)and use L+ to denote the set of positive examples inL, and L� to denote the set of negative examples inL. The algorithm is then as follows.1. We 
onstru
t a weighted graph G = (V;E), whereV = L[U[fv+; v�g, and E � V �V . Asso
iatedwith ea
h edge e 2 E is a weight w(e). We will
all the verti
es v+ and v� Classi�
ation verti
es,and all other verti
es Example verti
es.2. The 
lassi�
ation verti
es are 
onne
ted by edgesof in�nite weight to the labeled examples havingthe same label as they do. Spe
i�
ally, w(v; v+) =1 for all v 2 L+ and w(v; v�) =1 for all v 2 L�.3. The edges between Example verti
es are assignedweights based on some relationship between theexamples, su
h as the similarity/distan
e betweenthem. The spe
i�
 
hoi
e of these edge weightswill be dis
ussed later. In the rest of the paper,the fun
tion assigning weights to edges betweenExample nodes will be referred to as the EdgeWeighting fun
tion w.4. Now we determine a minimum (v+; v�) 
ut for thegraph; that is, we �nd the minimum total weightset of edges whose removal dis
onne
ts v+ fromv�. This 
an be found using a max-
ow algorithmin whi
h v+ is the sour
e, v� is the sink, and theedge weights are treated as 
apa
ities (see, e.g.,(Cormen et al., 1990)). Removing the edges inthe 
ut partitions the graph into two sets of ver-ti
es whi
h we 
all V+ and V�, with v+ 2 V+ andv� 2 V�. For 
on
reteness, if there are multi-ple minimum 
uts, we 
an set the algorithm to
hoose the one su
h that V+ is smallest (this isalways well-de�ned and easy to obtain from the
ow).



5. We assign a positive label to all unlabeled exam-ples in the set V+ and a negative label to all un-labeled examples in the set V�.The motivation for this algorithm is that if edges be-tween examples whi
h are similar to ea
h other aregiven a high weight, then, two similar examples arelikely to be pla
ed in the same vertex subset obtainedfrom the min
ut. This 
onforms with the basi
 as-sumption of many learning algorithms (like nearestneighbor) that similar examples should be 
lassi�edsimilarly.This motivation in fa
t suggests how we should weightthe edges. If we have a notion of \distan
e" betweenexamples su
h that we expe
t nearby examples to gen-erally have the same label (e.g., this might just be L2distan
e in the feature spa
e), then a natural weightingfun
tion is to put high-weight edges between nearbyexamples, and low-weight edges (or no edges) betweenfarther-away examples. If we are not initially handedsu
h a distan
e fun
tion (e.g., we do not expe
t thestraightforward one based on feature values to be veryhelpful) then we may �rst wish to feed the labeled datainto some auxiliary learning algorithm that learns adistan
e fun
tion for us. For example, we 
ould use thelabeled data to weight the attributes based on infor-mation gain. Another freedom we have is to s
ale theweight of an edge (x; y) for x 2 U based on whetheror not y 2 L: this allows us to interpolate betweenputting unlabeled data on similar footing as the la-beled data and ignoring unlabeled data 
ompletely.We will see later that the 
hoi
e of edge weightingfun
tion 
an greatly in
uen
e the quality of output ofthe algorithm.3. Motivation #1: minimizing LOOCVerrorWhy might the min
ut approa
h be a reasonable oneto try? In this se
tion, we motivate this approa
h by
onsidering the goal of assigning labels to the unla-beled data in order to maximize the \happiness" ofsome given learning algorithm A. We will prove tworelated but te
hni
ally di�erent kinds of results:1. For 
ertain learning algorithms A, we 
an de�needge weights so that the min
ut algorithm pro-du
es a labeling of the unlabeled data that (outof all possible su
h labelings) results in A havingthe least leave-one-out 
ross validation error whenapplied to the entire dataset L [ U .2. For 
ertain (other) learning algorithms A, we 
ande�ne edge weights so that the min
ut algorithm'slabeling results in A having zero leave-one-out
ross validation error when only examples in Uare held out.The types of learning algorithms we will be able tohandle are all of the nearest-neighbor style. We begin

with a simple result of type (1) for the basi
 1-nearest-neighbor algorithm.Theorem 3.1 Suppose we de�ne edge weights be-tween Example nodes in the following way: for ea
hpair of nodes x and y, de�ne nnxy = 1 if y is the near-est neighbor of x, and nnxy = 0 otherwise. Now letw(x; y) = nnxy + nnyx. Then, for any binary labelingof the examples x 2 U , the 
ost of the asso
iated 
ut isequal to the number of leave-one-out 
ross-validationmistakes made by 1-nearest neighbor on L [ U .This theorem implies that minimizing the value of the
ut 
orresponds to minimizing LOOCV error.Proof: Fix some binary labeling f(x) of the unla-beled examples x 2 U . The LOOCV error of 1-nearestneighbor is simply the number of x 2 L[U su
h thatthe label of x is di�erent from the label of x's near-est neighbor. This is the sum, over all ordered pairshx; yi su
h that x and y have di�erent labels, of nnxy.But this is exa
tly the value of the 
ut produ
ed byputting the positive examples into V+, and putting thenegative examples into V�.It would seem natural to extend the above result tothe k-nearest neighbor algorithm, but unfortunatelythe majority-vote operation of kNN 
auses a problem.What we 
an do instead is repla
e the majority-voteoperation with averaging. Spe
i�
ally, let's de�ne av-eraging kNN to be the algorithm that examines the knearest neighbors to a given test example x and pre-di
ts the fra
tion t=k, where t is the number of positiveexamples in that set (we are viewing positive examplesas having label 1 and negative examples as having la-bel 0). More generally, given a set of labeled examplesS and a test example x, let's de�ne lo
ally-weightedaveraging to be any algorithm that predi
ts the labelof x to be a weighted average of the labels of the exam-ples in S. So, we 
ould use the k nearest examples to xas in averaging kNN, or, for instan
e, we 
ould weightexamples as some fun
tion of their distan
e from x.Theorem 3.2 Given a lo
ally-weighted averaging al-gorithm A, we 
an de�ne edge weights so that the mini-mum (v+; v�) 
ut yields a labeling of the unlabeled datathat (out of all possible labelings of U) minimizes theL1-norm LOOCV error of A.Proof: For ea
h ordered pair of examples hx; yi, de�newxy to be the weight given by A to example y whenasked to 
lassify example x. So, for ea
h x, Py wxy =1. De�ne the edge weight w(x; y) = wxy + wyx.Now, �x some binary labeling f(x) of the unlabeledexamples x 2 U . Let V+ denote the set of positiveexamples in L[U , and let V� denote the set of negativeexamples. Then, the 
ost of the (V+; V�) 
ut is equalto Xx2V+;y2V� w(x; y) = Xx2V+ Xy2V� wxy + Xy2V� Xx2V+wyx



= Xx2V+ 1�A(x) + Xy2V�A(y):where A(x) denotes the 
lassi�
ation of x by the algo-rithm A.This is the LOOCV error of A on the entire dataset inL1 norm. Therefore, the labeling that minimizes thevalue of the 
ut also minimizes A's LOOCV error.For some algorithms A that we 
annot represent ex-a
tly, we 
an at least a
hieve zero LOOCV error overjust the unlabeled examples U . In parti
ular, de-�ne Symmetri
 Weighted Nearest Neighbor to be anyweighted nearest neighbor algorithm (the predi
tionon an example x is made by a weighted majority voteover the other examples in the dataset) but wherethe weights must be symmetri
 (the weight given to ywhen predi
ting on x is the same as the weight givento x when predi
ting on y). For example, the weights
ould be based on the distan
e between the examples.kNN is not symmetri
 be
ause it is possible that y isa nearest neighbor of x but x is not a nearest neighborof y.Theorem 3.3 Let w be the weight fun
tion used forthe Symmetri
 Weighted Nearest Neighbor Algorithm.Then, if we use the same fun
tion w for weightingedges in Graph Min
ut, the 
lassi�
ation returned byGraph Min
ut results in the algorithm having zeroLeave-one-out Cross-validation error over U .The proof follows dire
tly from the following lemma.Lemma 3.4 If f is the boolean 
lassi�
ation returnedby Graph Min
ut on dataset S = U [L, where we viewpositive as +1 and negative as �1, then for all x 2 U ,f(x) = Sgn(�u2S�fxgw(x; u)f(u)), where Sgn(z) = 1if z > 0 and Sgn(z) = �1 otherwise.Proof: The graph min
ut will divide the set of ex-amples S into a positive set V+ and a negative set V�.Suppose x 2 V�. Then, sin
e we solved for a minimum
ut, we have,Xu2V+ w(x; u) � Xu2V� w(x; u);otherwise moving x from V� to V+ would stri
tly im-prove the value of the 
ut. This implies thatXu2S�fxgw(x; u)f(u) � 0So we have f(x) = Sgn(Pu2S�fxgw(x; u)f(u)) asdesired. The 
ase of x 2 V+ is the same, ex-
ept we 
an now make the 
laim of stri
t inequal-ity sin
e V+ is de�ned to be the smallest set su
hthat (V+; V�) is a minimum 
ut. So, we again havef(x) = Sgn(Pu2S�fxg w(x; u)f(u)) as desired.Proof of Thm 3.3: Immediate from Lemma 3.4.

3.1 Dis
ussionThe above results state that graph min
ut will produ
elabelings of the unlabeled data that are in a sense self-
onsistent. If we think of a learning algorithm (in par-ti
ular, its LOOCV error) as measuring how \ni
e" adataset is, then min
ut assigns labels to make the datani
e for nearest-neighbor style algorithms.This fa
t also points out a worry. If we have very fewlabeled examples and very many unlabeled examples,then this self-
onsisten
y 
an 
ause min
ut to assignall the unlabeled examples to one 
lass or the other.For instan
e, if we have just one labeled positive exam-ple and one labeled negative example, and we 
onne
tea
h example by edges of weight 1 to its three near-est neighbors, then labeling all the unlabeled pointsas negative gives a 
ut of value 3. This may well bethe minimum 
ut unless the dataset really does sep-arate into two distin
t \blobs". This 
ould well be aworse 
lassi�er than if the unlabeled data had been
ompletely ignored. Shi and Malik (1997) address thisproblem in the 
ontext of image segmentation by us-ing a normalized version of the min
ut algorithm thatattempts to equalize the sizes of the partitions (it isNP-hard to �nd the best 50/50 split in a graph, buttheir approa
h at least en
ourages some balan
e).Another potential problem is that if the graph is toosparse, it 
ould well have a number of dis
onne
ted
omponents. For example, if we use the graph basedon 1-nearest-neighbor, then two unlabeled examplesvery near to ea
h other might form their own 
ompo-nent. The min
ut algorithm is then free to label that
omponent however it likes (and a

ording to our pol-i
y, would label it negative). So, it is important touse a weighting fun
tion that does not allow this tohappen.4. Motivation #2: a Generative ModelIn the vision literature, the min
ut approa
h and var-ious extensions are motivated through a generativemodel known as a Markov Random Field. This modelassumes the points (examples) are pi
ked in advan
e,and then the labels are determined probabilisti
ally a
-
ording to a 
ertain distribution (Pietra et al., 1997).This distribution is su
h that the probability of anygiven global labeling is the produ
t of unary and pair-wise terms: higher probability if nearby points aregiven the same labeling and lower probability whenthey have di�erent labeling. When you take the log,you get the min
ut obje
tive fun
tion. This modelmakes sense in physi
al systems (e.g., the Ising modelfor how spins behave in magnetized iron) and perhapsfor pixel images, but is less satisfying when 
onsider-ing learning from examples. In parti
ular, it doesn'taddress how examples are 
hosen, and why similar ex-amples ought to have similar labels.Instead, we 
onsider here a generative model thatseems (to us, at least) more satisfying. In this model,



we assume that the underlying distribution over ex-amples is a union of k regions, ea
h of whi
h has aunique label. E.g., there 
ould be 3 positive regionsand 3 negative regions. The regions are separated bysome minimum distan
e Æ. An example is pi
ked byrandomly 
hoosing a point inside the union of the re-gions, then giving it its region's label.3 The idea isthat if we set edge weights appropriately, then weightsbetween regions will be weak, whereas as we see moreand more unlabeled examples, edges within the regionswill grow stronger. Furthermore, if ea
h region is well-shaped (e.g., not like a dumbbell) then regions willbe
ome highly 
onne
ted and a single labeled exampleinside a region will allow us to 
orre
tly 
lassify all thepoints inside it.We now make this a bit more pre
ise. Say the regionslive in a D-dimensional spa
e, and for normalization,assume that their total volume is 1.4 De�ne the \Æ-interior" of some region R to be the set of points inR whose distan
e to the boundary of R is at least Æ.De�ne the \Æ-tendrils" of R to be the set of pointsthat are not within distan
e Æ of the Æ-interior. (Theseare the points that no ball of radius Æ 
ontained in R
an tou
h.) We say that a region R is \(�; Æ)-round"if (a) at most an � fra
tion of its volume is in the Æ-tendrils, and (b) the Æ-interior of R is 
onne
ted andnon-empty.The following analysis borrows some ni
e proof ideasof Tenenbaum et al. (2000). Let Vr denote the volumeof the D-dimensional ball of radius r.Theorem 4.1 Suppose that data is generated uni-formly at random in the union of k (�; Æ=4)-round re-gions, su
h that the distan
e between any two regions isat least Æ and the 
lassi�
ation of a point depends solelyon the region to whi
h it belongs. Let the weightingfun
tion for graph min
ut be w(x; y) = 1 if d(x; y) < Æand w(x; y) = 0 otherwise. Then O((k=�) log k) la-beled examples and O((1=VÆ=4) log(1=VÆ=8)) unlabeledexamples are suÆ
ient to 
orre
tly 
lassify a 1�O(�)fra
tion of the unlabeled examples with high probabil-ity.Note: A similar but messier result 
an be a
hieved byusing a weighting fun
tion su
h as w(x; y) = e1=d(x;y)that drops o� suÆ
iently rapidly with distan
e.Proof sket
h: We 
an ignore regions of probabilitymass � �=k. The �rst property we need is that ea
hremaining region has at least one labeled example, andthis example is not in a Æ=4-tendril. O((k=�) log k)labeled examples are suÆ
ient for this to o

ur withhigh probability.3We 
ould add noise in the labels at this point, but forsimpli
ity we leave that out.4We 
ould generalize this to assuming regions are D-dimensional manifolds lying in some higher dimensionalspa
e as in (Tenenbaum et al., 2000; Roweis & Saul, 2000)without a�e
ting the results.

Next, we need enough unlabeled examples in ea
h re-gion so that in the resulting graph, the Æ=4-interioressentially be
omes a single 
onne
ted 
omponent. Toanalyze this, given a regionR, �ll it as mu
h as possiblewith balls of radius Æ=4 su
h that the 
enter of any balli is not inside any other ball j. Noti
e that this will �llthe entire Æ=4-interior, sin
e if any point p inside it isun
overed, we 
ould just greedily add a new ball 
en-tered at p. These balls have two important features:�rst, if we get an unlabeled example in ea
h of them,then we 
an get from any point not in the Æ=4-tendrilsto the labeled example, using edges in the graph. Se
-ond, if we shrink the radii of these balls by a fa
tor of 2,then they all be
ome disjoint. The se
ond fa
t meansthat over all the regions, the total number of balls usedis at most 1=VÆ=8. Therefore, the number of unlabeledexamples we need is O((1=VÆ=4) log(1=VÆ=8)).4.1 Dis
ussionIt might seem that under the generative model in theo-rem 4.1, most nearest neighbor style algorithms wouldperform pretty well. However, this is not the 
ase if theregions are long and thin, and labeled data is sparse.This is be
ause in that 
ase, examples might easily be
loser to labeled examples in other regions than theirown. Experimental results shown in �gures 2 and 3
orroborate this fa
t by 
omparing min
ut against 3-nearest neighbor on a syntheti
 dataset of this type.The next se
tion 
ontains more dis
ussion of these �g-ures.5. Experimental AnalysisWe tested the Graph Min
ut Algorithm on standarddatasets, both real and syntheti
, as well as on ourown syntheti
 dataset intended to �t the generativemodel of Se
tion 4.5.1 Standard datasetsWe 
ompared the min
ut algorithm with two standardlearning algorithms, ID3 and 3-nearest-neighbor, ondatasets obtained from the UC Irvine Ma
hine Learn-ing Repository (UCI, 2000). The min
ut algorithmhas many degrees of freedom in terms of how the edgeweights are de�ned. In order to make the experimentsas 
lean as possible, we 
onsider weighting fun
tionsspe
i�
ally motivated by the analysis in the previ-ous se
tions and the learning algorithms we 
ompareagainst. These are as follows:Min
ut-3 For this algorithm, we 
onne
t ea
h unla-beled example by an edge of weight 1 to its threenearest neighbors. However, to avoid having iso-lated 
omponents (see Se
tion 3.1) we for
e one ofthese to be a labeled example. Spe
i�
ally, ea
hexample is 
onne
ted to its nearest labeled exam-ple and the two other nearest examples overall.Min
ut-Æ For this algorithm, we use some metri
 to



Table 1. Classi�
ation a

ura
ies of Graph Min
ut and other algorithms on various datasets from the UCI repository.\Mush" is the mushroom dataset, and MI, MII, and MIII are the (syntheti
) Monks problems. Datasets with an asterixhave a small amount of noise in the training set. The best result for ea
h dataset is given in bold. In 
ases where the bestis Min
ut-Æopt (whi
h involves pi
king Æ after the fa
t), the se
ond-best is also given in bold.Dataset jLj&jUj number of Min
ut ID3 3-NNfeatures Min
ut-3 Min
ut-Æopt Min
ut-Æ0 Min
ut-Æ1=2Mush 20+1000 22 82.1 97.7 97.7 97.0 93.3 91.1Mush* 20+1000 22 74.2 88.7 56.9 87.0 80.8 83.3Tae 10+100 5 86.0 99.0 96.0 97.0 86.0 80.0Tae* 10+100 5 76.0 96.0 86.0 94.0 76.0 62.0Voting 45+390 16 89.1 91.3 66.1 83.3 86.4 89.6Musk 40+200 166 73.0 92.5 91.0 92.5 83.5 87.0Pima 50+718 8 63.8 72.3 48.8 72.3 70.0 68.1Iono 50+300 34 71.0 81.6 78.0 77.6 88.6 69.6Bupa 45+300 6 53.3 59.3 48.0 41.7 55.3 52.7MI 124+432 6 70.0 64.4 64.4 64.4 98.6 81.1MII 169+432 6 68.6 67.2 57.2 67.2 67.9 63.6MIII* 122+432 6 79.1 80.6 64.8 80.6 94.4 83.6
ompute distan
es between points. If two pointsare 
loser than Æ to ea
h other, they are 
onne
tedwith an edge. Æ is a parameter that depends onthe dataset.� For Min
ut-Æ0, we 
hoose the maximum Æfor whi
h the graph has a 
ut of value 0.� For Min
ut-Æ1=2, we use that value of Æ forwhi
h the size of the largest 
onne
ted 
om-ponent in the graph is half the number ofdatapoints.� For Min
ut-Æopt, we 
hoose the value of Æthat 
orresponds to the least 
lassi�
ation er-ror in hindsight. The performan
e of thisalgorithm gives us a ben
hmark to measureperforman
e of other Min
ut-Æ variants by.In some of the datasets we used, all attributes are 
at-egori
al, so we use an L0 (Hamming) notion of dis-tan
e. For other datasets, we use L2 (Eu
lidean) dis-tan
e. For datasets with a large number of dis
rete-valued attributes, we take a 
ue from ID3 and de�nea distan
e metri
 that weights the attributes based oninformation gain. Information gain is 
omputed overthe labeled data. Spe
i�
ally, the weighting fun
tionused is:w(x; y) = Ya2attributes;x(a)6=y(a) 
1 + eb�gainawhere b and 
 are 
onstants. The spe
i�
 
hoi
e of 
on-stants b and 
 does not a�e
t algorithm performan
e,as it simply leads to 
onvergen
e at a di�erent valueof Æ.Experimental results 
orresponding to the four Min
utvariants des
ribed above are shown in Table 1.As 
an be seen, Min
ut-Æopt outperforms other al-gorithms on most datasets (the main ex
eptions arethe monks datasets). However, the best value of Æ ishighly problem dependent. In an attempt to have the

algorithm automati
ally learn this value, we experi-mented with several te
hniques, two of whi
h seemedreasonable for 
omparison. One of these is to examinethe min
ut value of the resulting graph and sele
t Æbased on this; for example, the Min
ut-Æ0 algorithmis of this form. However, Min
ut-Æ0 fails for inher-ently noisy datasets (
ompare for example the Mushand Mush* datasets and Tae and Tae* datasets). Theother te
hnique whi
h performs better is to observe thesize of the largest 
onne
ted 
omponent in the result-ing graph. The idea behind this te
hnique is that whendatasets are somewhat noisy, we should allow long dis-tan
e dependen
ies in the graph to smoothen the e�e
tof noise. This is the idea behind the Min
ut-Æ1=2 al-gorithm. This te
hnique works well for most datasets,and in parti
ular, seems to do well in the presen
e ofnoise. As a future extension to this work, it would beinteresting to explore new methods of �nding a goodvalue for Æ.Figure 1. Classi�
ation error of graph min
ut on Mush-room dataset as a fun
tion of �
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As observed before, graph min
ut is very similarto nearest neighbor style algorithms. While nearest



neighbor bases its 
lassi�
ation on only the labeled ex-amples, graph min
ut takes into a

ount the unlabeledexamples as well and treats them similarly. How wouldthe performan
e of min
ut di�er if di�erential treat-ment was given to labeled and unlabeled examples?More pre
isely, if we s
ale down edge weights betweentwo unlabeled examples by a fa
tor of �, a value of1 for � would result in the regular min
ut algorithm,while a value of 0 would give no weight to unlabeledexamples, making the algorithm resemble the under-lying supervised learning algorithm. In some sense, �signi�es our 
on�den
e in the unlabeled examples as
ompared to labeled examples. Figure 1 demonstratesthe results of this experiment on the mushroom datasetfor the Min
ut-Æ algorithm. Minimum 
lassi�
ationerror is a
hieved at � = 0:4.Figure 2. Classi�
ation errors of graph min
ut and 3-NNon syntheti
 dataset as a fun
tion of number of labeledexamples. Number of unlabeled examples = 5000.
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Figure 3. Classi�
ation errors of graph min
ut and 3-NNon syntheti
 dataset as a fun
tion of number of unlabeledexamples. Number of labeled examples = 50.
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5.2 Syntheti
 datasetsIn order to study various properties of the graph min-
ut approa
h more 
losely, we tested the algorithm ona syntheti
 dataset based on the k regions generativemodel des
ribed in Se
tion 4. This dataset 
ontains8 regions in 3-dimensional spa
e, whi
h are separatedfrom ea
h other by a minimum distan
e Æ. Spe
i�-
ally, ea
h region is a 2-dimensional plane in yz spa
e,lo
ated at x-
oordinates 0; Æ; 2Æ; : : : ; 7Æ respe
tively.These regions alternate in sign, so that 4 of them arepositive and 4 are negative. Data is generated uni-formly at random from the union of these regions. Forthis dataset, we use L2 norm for determining distan
e,and assign edge weights as an exponentially-de
reasingfun
tion of distan
e. The dependen
e of 
lassi�
ationerror for graph min
ut and 3-nearest neighbor on la-beled and unlabeled examples is shown in Figures 2& 3.5 Figure 2 plots the performan
e of Min
ut and3-NN for a �xed number of unlabeled examples as theamount of labeled data varies. As 
an be seen in the�gure, Min
ut performs substantially better than 3-NN when there is very little labeled data, but this gapshrinks as the number of labeled examples in
reases,with both algorithms performing equally well at about700 labeled examples. Figure 3 �xes the number of la-beled examples at 50 and then in
reases the amount ofunlabeled data. As seen in the �gure, Min
ut is able touse this unlabeled data to substantially improve per-forman
e. These results indi
ate that the real advan-tage of using graph min
ut is a
hieved when there isa huge amount of unlabeled data, but a pau
ity oflabeled data.Figure 4. Classi�
ation error of graph min
ut and iterativere-labeling on syntheti
 dataset as a fun
tion of number ofunlabeled examples.
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It is also instru
tive to 
ompare the performan
e ofgraph min
ut with an iterative re-labeling style algo-5Ea
h experiment involved 100 independent iterationsof randomly sele
ting data and performing the 
lassi�
a-tion algorithm. The reported values are means over theseiterations.



rithm, whi
h tries to minimize the same obje
tive fun
-tion as min
ut, but �nds a lo
al rather than global op-timum. In parti
ular, one natural iterative approa
his to begin with a random labeling, and then to per-form hill-
limbing, 
ipping labels so long as this re-du
es the 
ut value, until we rea
h a lo
ally-optimallabeling. We 
ompare the two algorithms on the samesyntheti
 dataset as used before and �nd that min
utgives a far better performan
e (Figure 4). In fa
t, theiterative algorithm performs extremely poorly.6. Con
lusionsWe des
ribe a new method of utilizing unlabeled datafor 
lassi�
ation based on graph 
uts. The essen
e ofthe approa
h is to assign values to the unlabeled exam-ples in a way that optimizes 
onsisten
y in a nearest-neighbor sense (i.e., that similar examples should be
lassi�ed similarly). What makes this approa
h inter-esting from the theoreti
al point of view is that thisis an optimization that 
an be performed in polyno-mial time. We motivate this approa
h both throughself-
onsisten
y measures (minimizing LOOCV errorof 
ertain algorithms) and through a fairly natural gen-erative model.We �nd experimentally that the Graph Min
ut al-gorithm performs reasonably well when 
ompared toother learning algorithms that do not use the unla-beled data, espe
ially when there are very few labeledexamples. The underlying algorithm, however, hasmany degrees of freedom | in parti
ular in the de-sign of the edge-weighting fun
tion | and it may wellbe that we have not yet found the best way to 
om-pute a weighting fun
tion from the information avail-able at the time of learning. For example, even forthe simplest 
ase of setting weights to 0 or 1 basedon a single real-valued parameter Æ, the experimentsshow that there was a signi�
ant gap between our rulesfor 
hoosing Æ in advan
e and the best Æ in hindsight.Nonetheless, this is an eÆ
ient algorithm, and adds anew te
hnique to our algorithm repertoire. We also�nd experimentally that the min
ut approa
h is ro-bust to noise. It would be interesting to use a vari-ation of the method des
ribed here for noise redu
-tion in real world datasets. The noise-robustness alsosuggests that the min
ut approa
h 
ould be used in
onjun
tion with another learning algorithm: �rst theother learning algorithm would be used to give initiallabels to the unlabeled data, and then the min
ut al-gorithm would \
lean up" this labeling by enfor
ing akind of global 
onsisten
y. We intend to explore thisin future work. We would also like to 
ompare theperforman
e our algorithm with that of Transdu
tiveSVM.A
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